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Abstract

Fusing side information in session-based recommendation is
crucial for improving the performance of next-item prediction
by providing additional context. Recent methods optimize at-
tention weights by combining item and side information em-
beddings. However, semantic heterogeneity between item IDs
and side information introduces computational noise in at-
tention calculation, leading to inconsistencies in user interest
modeling and reducing the accuracy of candidate item scores.
These methods also often fail to leverage session-based re-
interaction patterns, limiting improvements in score predic-
tion during the decoding phase. To address these challenges,
we propose ScoreNet, a consistency-driven framework with
multi-side information fusion for session-based recommen-
dation. ScoreNet explicitly models users’ persistent prefer-
ences, generating consistent decoding scores for candidate
items within a unified framework. It incorporates a multi-
path re-engagement network to capture re-interaction behav-
ior patterns in a semantic-agnostic manner, enhancing side
information fusion while avoiding semantic interference. Ad-
ditionally, a position-enhanced consistent scoring network re-
distributes attention scores within sessions, improving predic-
tion accuracy, especially for items with limited interactions.
Extensive experiments on three real-world datasets demon-
strate that ScoreNet outperforms state-of-the-art models.

Introduction
Session-based recommender systems (SBRs) aim to predict
the next item in personalized recommendations by analyz-
ing users’ recent interactions within anonymous sessions
(Wang et al. 2021). Deep learning methods have signifi-
cantly advanced the modeling of item transition patterns and
the learning of session embeddings that capture user prefer-
ences (Hidasi et al. 2015; Li et al. 2017; Ren et al. 2019; Wu
et al. 2019; Qiu et al. 2019; Xu et al. 2019; Chen and Wong
2020; Kang and McAuley 2018; Sun et al. 2019a; Zhou et al.
2020; Wang et al. 2024). Recently, there has been increasing
interest in utilizing various side information (e.g., category,
brand) to enhance recommendation relevance by providing
richer contextual information (Xie, Zhou, and Kim 2022).
As a result, side information fusion in SBRs has garnered
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Figure 1: Motivating example. The figure illustrates users’
persistent interest in items sharing similar side information,
suggesting the potential enhancement for SBRs by fusing
side information to model user-item re-interactions.

significant attention in both academia and industry (Liu et al.
2021; Wang et al. 2022, 2023; Liu et al. 2024).

Current approaches integrating side information with self-
attention mechanisms focus on improving the distribution
of attention weights across session items to more accurately
capture user preferences. These methods can be categorized
into invasive and non-invasive techniques (Liu et al. 2021).
Invasive methods like FDSA (Zhang et al. 2019) and ICAI-
SR (Yuan et al. 2021b) combine session and side informa-
tion embeddings through concatenation or weighted averag-
ing. While promising, they risk causing a shift in embed-
dings away from pure item ID representations, potentially
impairing consistency during decoding (Hou et al. 2022). To
maintain decoding consistency and minimize disturbances
from side information semantics, non-invasive methods like
NOVA (Liu et al. 2021) and DIF-SR (Xie, Zhou, and Kim
2022) use fused representations only as keys and queries in
the attention mechanism while keeping values confined to
item features (Zheng et al. 2024, 2023).

Despite these advancements, several challenges remain.
The semantic heterogeneity between item-specific (item
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IDs) and attribute-specific (multi-side information) repre-
sentations introduces interference during preference atten-
tion computation. This misalignment results in inconsistent
attention weight distributions, disrupting the mechanism and
causing inaccuracies in modeling user preferences and scor-
ing candidate items. Furthermore, these methods often over-
look distinct interaction patterns within multi-side informa-
tion, limiting their ability to improve item score predictions.
For example, users often re-interact with items sharing sim-
ilar side information (e.g., ”clothing” category) during ses-
sions, reflecting accumulated interests that clarify their sub-
sequent interaction goals (see Figure 1). However, due to
semantic heterogeneity between item IDs and side informa-
tion, existing methods struggle to effectively capture such
patterns, resulting in inconsistent modeling of user prefer-
ences and inaccuracies in decoding scores. Addressing per-
sistent user preference patterns while ensuring a consistent
semantic space between session representations and item
IDs during prediction remains a significant challenge.

To address these challenges, we propose ScoreNet, a
novel and unified framework that integrates multi-side in-
formation to generate prediction scores across all candidate
items during decoding. ScoreNet consists of two key compo-
nents: (1) A Multi-Path Re-Engagement Network (MPRE)
that calculates re-engagement scores for items likely to be
re-interacted by users, explicitly modeling users’ persis-
tent interest preferences using multi-side information in a
semantic-agnostic manner. It allows side information to in-
fluence candidate scores while remaining robust to seman-
tic variations arising from different types of side informa-
tion. (2) A Position-Enhanced Consistent Scoring Network
(PECS) that addresses items with limited user interactions
by ensuring a consistent semantic space between session
and item ID representations through a position-enhanced
encoder. Unlike existing methods that directly transform
transition relationships into scores, ScoreNet models per-
sistent behavior patterns in a semantics-agnostic manner
and ensures decoding consistency by aligning session rep-
resentations and item ID embeddings, thereby improving
score accuracy and offering a novel perspective for SBRs.
ScoreNet’s superior performance compared to state-of-the-
art models underscores the importance of maintaining de-
coding space consistency and directly integrating side infor-
mation during the prediction phase.

Our contribution can be summarized as follows:

• We present ScoreNet, a novel framework that integrates
side information directly into the calculation of candidate
item scores, optimizing the use of side information while
ensuring decoding consistency.

• We propose a multi-path re-engagement network that
models persistent behavior patterns across different types
of side information in a semantic-agnostic manner.

• We introduce a position-enhanced scoring network to
address the challenge of items with limited interac-
tions. Position-enhanced computation redistributes atten-
tion scores within sessions, ensuring session-item repre-
sentation consistency for accurate predictions.

• Extensive experiments on three real-world datasets show

ScoreNet’s superior performance, demonstrating inter-
pretability through attention distribution visualization.

Related Work
Session-based Recommendation
Early approaches like Markov chains and matrix factor-
ization (Rendle, Freudenthaler, and Schmidt-Thieme 2010;
Kabbur, Ning, and Karypis 2013; He and McAuley 2016)
struggled with complex sequence patterns. The introduction
of deep learning, particularly Recurrent Neural Networks
(RNNs) (Quadrana et al. 2017; Ma, Kang, and Liu 2019;
Yan et al. 2019; Hidasi et al. 2015; Li et al. 2017; Ren et al.
2019), significantly improved performance. GRU4Rec (Hi-
dasi et al. 2015) leveraged Gated Recurrent Units (GRU)
to capture user interests, outperforming traditional models.
Graph Neural Networks (GNNs) further advanced SBRs by
representing user interactions as graphs. SR-GNN (Wu et al.
2019) was pioneering in applying GNNs to SBRs, captur-
ing complex item transitions with Gated Graph Neural Net-
works (GGNNs). Later models, including FGNN (Qiu et al.
2019), GC-SAN (Xu et al. 2019), GCE-GNN (Wang et al.
2020), and Atten-Mixer (Zhang et al. 2023) introduced at-
tention mechanisms and enhanced information aggregation.
The Attention Mechanism revitalized SBRs, with STAMP
(Liu et al. 2018) emphasizing short-term preferences. SAS-
Rec (Kang and McAuley 2018) and Bert4Rec (Sun et al.
2019b) employed self-attention to capture contextual infor-
mation. More recent models like DSAN (Yuan et al. 2021a),
CORE (Hou et al. 2022) have further optimized these ap-
proaches, achieving state-of-the-art performance.

Side Information Fusion for Session-based
Recommendation
Research on integrating side information into session em-
beddings has explored various methods. Liu et al. (Liu et al.
2021) classify these methods as invasive or non-invasive. In-
vasive techniques directly combine session embeddings with
side information through vector concatenation or addition
operations. For example, FDSA (Zhang et al. 2019) sepa-
rately processes item and attribute sequences before merg-
ing them via concatenation, while ICAI-SR (Yuan et al.
2021b) employs an attention mechanism to integrate embed-
dings through a weighted average. However, this direct fu-
sion can shift session embeddings, potentially affecting can-
didate item scoring based on vector similarity. Recent stud-
ies in favor of non-invasive methods like NOVA and DIF-
SR (Liu et al. 2021; Xie, Zhou, and Kim 2022), which use
integrated representations of items and side information as
keys and queries in the self-attention mechanism while pre-
serving the core item features. This approach maintains the
consistency in session and candidate item embeddings, re-
ducing bias in similarity computations. These advancements
offer promising directions for improving session-based rec-
ommendation systems.

Methodology
Given a session s = [v1, v2, ..., vn], where vt is the t-
th interacted item and n is the session length. Each in-
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Figure 2: Overview of the proposed ScoreNet.

teraction item vt includes M types of side information:
vt = (it, c

(1)
t , ..., c

(M)
t ), where c

(j)
t denotes the j-th type

of side information for the t-th interaction, and it repre-
sents the item ID. All session item IDs are drawn from the
I = [i1, i2, ..., i|I|]. We represent item IDs and side informa-
tion with low-dimensional, dense embedding vectors. Can-
didate item IDs are represented by X = [x1, x2, ..., x|I|],
where xi ∈ Rd is the embedding vector for the i-th item
in the dictionary, and xt ∈ Rd represents the item in the
t-th session interaction. Side information is represented by
E(m) = [e

(m)
1 , e

(m)
2 , . . . , e

(m)
|C| ], where e(m)

t ∈ Rd represents
the m-th type of side information, and C denotes the num-
ber of unique side information values for a given attribute
type (e.g., the number of unique side information values un-
der the ’brand’ attribute). The session-based recommenda-
tion system computes the score and predicts probabilities
for all candidate items: ŷ = [ŷ1, ŷ2, ..., ŷ|I|], where ŷi is the
probability for the i-th item in I . The system recommends
the top items with the highest probability1.

Framework
We propose ScoreNet (seen as Figure 2) to generate decod-
ing scores for all candidate items within a unified decod-
ing space, explicitly incorporating side information to model
user preference patterns, as described in Eq. 1:

Score (i | IS , CS) = f(Score (i | g, IS) ;
Score (i | r, IS) ;Score (c | CS)))

(1)

Score (i | r, IS) represents the re-engagement mode, which
models users’ persistent interests in items with re-engaged
attributes by computing the decoding score for these

1https://github.com/pppiao/ScoreNet.

items. Score (c | CS) indicates the weight score of spe-
cific side information that frequently engaged in the session.
Score (i | g, IS) captures the generalization mode, calculat-
ing the weight score for items with limited user interaction
sequences. It models semantic dependencies between item
IDs and related side information, ensuring consistency be-
tween sessions and candidate item ID representations. It also
incorporates position-enhanced computation to redistribute
attention scores within sessions, further refining the recom-
mendation process. f is a unified scoring function that ag-
gregates the different scoring components to balance the in-
fluence of re-engagement and generalization, to ensure that
both persistent and transient user preferences are captured
effectively.

Multi-Path Re-Engagement Network
We introduce the Multi-Path Re-Engagement Network
(MPRE), a model designed to independently process multi-
side information sequences, effectively capturing user re-
interaction patterns without relying on specific semantic
meanings. MPRE generates item scores by leveraging the
user’s overall re-engagement behavior.

The independent processing of various side information
sequences within sessions. As expressed in the following
equations:

Score(i|r, IS) = MPRE([IS ;X],ΦI)

Score(c|C(1)
S ) = MPRE([C(1)

S ;E(1)],ΦC1)

Score(c|C(2)
S ) = MPRE([C(2)

S ;E(2)],ΦC2)

...

Score(c|C(k)
S ) = MPRE([C(k)

S ;E(k)],ΦCk)

(2)

Here, IS represents the items the user has interacted with,
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and C
(1)
S , C

(2)
S , ..., C

(k)
S denote sets of different side infor-

mation c ∈ CS within the session. The Score functions
compute re-engagement probabilities for a specific item or
side information. The parameters ΦI ,ΦC1,ΦC2, ...,ΦCk are
non-shared network parameters modeling re-interaction be-
havior with various side information types.

We further elaborate on the calculation of the re-
engagement score using the specific side information c ∈
C

(j)
S . The absolute position embedding pr for the index iw

represents the user’s most recent interaction. If a user’s last
repeat interaction with certain side information is far from
the most recent one, it may signal a shift in user interest.
These embeddings model the user’s re-interaction charac-
teristics via an attention mechanism.

To model the user’s re-engagement behavior, we define a
difference vector D, representing the behavioral pattern for
side information c: D = [iw−i1, iw−i2, iw−i3, ..., iw−iw],
where [i1, i2, i3, ..., iw] are recent re-engagement indices.
For example, if the indices are [1, 2, 4, ..., 8], the difference
vector D is computed as [7, 6, 4, ..., 0]. These values are then
mapped to position embeddings [d1, d2, d3, ..., dw] to model
re-engagement behaviors focusing on interaction frequency
rather than item sequence. The re-engagement score αre

c for
side information c in the set C(j)

S reflecting the accumulative
interest in the side information, is calculated as follows:

αre
c =

w∑
m=1

pr · dTm (3)

MPRE also introduces a score redistribution mechanism
to adjust re-engagement scores αre ∈ Rn based on the user’s
overall re-engagement behavior across all side information
in C

(j)
S . The updated score αre,update is calculated as:

αre,update =

w1
1α

re
1 + w1

2α
re
2 + · · ·+ w1

nα
re
n

...
wn

1α
re
1 + wn

2α
re
2 + · · ·+ wn

nα
re
n

 (4)

where wj
i represents the re-assigned score.

Finally, the re-engagement score for side information c ∈
C

(j)
S is given by:

Score(c|C(j)
S ) =

{
sigmoid(αre,update) if c ∈ C

(j)
S

0 if c /∈ C
(j)
S

(5)

This score reflects the user’s expected re-engagement with
side information c. If a candidate lacks historical interac-
tion data, the score is set to 0, indicating no expected re-
engagement.

Position-Enhanced Consistent Scoring Network
We design a Position-Enhanced Consistent Scoring Network
(PECS) within ScoreNet to improve prediction accuracy for
items with limited user interactions. In each session, every
item is associated with multiple side information attributes.
The interaction embedding Et at time step t is computed
using a fusion function F :

Et = F(xt, pt, e
(1)
t , e

(2)
t , . . . , e

(k)
t ) (6)

where pt is the position embedding for time step t, and xt

and e
(i)
t represent the item and side information embeddings,

respectively. We employ addition for fusion:

Fadd(xt, pt, e
(1)
t , e

(2)
t , . . . , e

(k)
t ) = xt + pt +

∑
i = 1ke

(i)
t

(7)
A L-layer Transformer is then used to update the embed-
dings across all time steps:

F = Transformers([E1;E2; . . . ;En]) (8)

where F ∈ Rn×d′
represents the updated embeddings, with

n as session length and d′ as the output dimension. The up-
dated embeddings capture user behavior and are transformed
into semantic importance scores using learnable parameters:

αe = w · F⊤ (9)

where αe ∈ Rn is a score vector, and w ∈ Rd′
is a learnable

parameter. To preserve positional information, a position-
aware attention mechanism is applied:

αp = pn · p⊤t (10)

where pn ∈ Rd is the position embedding for the last in-
teraction position n, and αp ∈ Rn represents the position
scores for all time steps t. The final weights for items in the
session are computed by combining semantic and position
scores:

αt =
exp(αe

t + αp
t )∑n

j=1 exp(α
e
j + αp

j )

hs =
n∑

t=1

αt · xt

(11)

where hs ∈ Rd is the final session representation. This
method ensures consistency between session and candidate
item embeddings. The score for each candidate item as:

ĥs = L2Norm(hs), x̂i = L2Norm(xi)

Score(i|g, IS) =

{
0 if i ∈ IS
ĥs · x̂i

T if i ∈ (I − IS)

(12)

where xi represents the embedding of the i-th candidate
item, L2Norm denotes the L2 Normalization function. The
score Score(i|g, IS) is zero for previously clicked items and
is determined by the cosine similarity between the session
embedding and candidate item embedding for new items.

Unified Scoring Mechanism for Prediction
We propose a unified scoring mechanism that integrates both
re-engagement and semantic scores to generate consistent
predictions for all candidate items:

Score(i|IS) = Score(i|g, IS) + Score(i|r, IS)

Scs(j) = Score(c|C(j)
S ) · ⊮{ci=c and c∈C

(j)
S }

Score(i|IS , CS) = α1 · Score(i|IS) +
α2

k

k∑
j=1

Scs(j)

(13)
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where α1 and α2 are hyperparameters that balance the con-
tributions of re-engagement behavior and semantic prefer-
ence modeling, with α1 + α2 = 1; The indicator function
⊮{c(j)i =c(j)} equals 1 if the candidate item i has the side in-
formation c that re-engaged in historical interactions, and 0
otherwise.

To generate the final recommendation probabilities for
each candidate item, we apply a softmax function:

ŷ = Softmax(τ · Score(i|IS , CS)) (14)

where τ is a scaling factor to prevent over-smoothing. he
model is trained using a cross-entropy loss function:

L (y, ŷ) = −
|I|∑
i=1

yi log (ŷi) (15)

where |I| denotes the set of candidate items, and y is the
one-hot encoded vector of the user’s actual clicks. Model
parameters are updated through backpropagation.

Experiments and Analysis
Experiments Setup
Datasets To evaluate our model, we utilize three real-
world e-commerce datasets: Diginetica, Tmall, and Retail-
rocket. These datasets provide diverse scenarios for perfor-
mance assessment. The Diginetica dataset from the 2016
CIKM Cup includes transaction data and item categories.
The Tmall dataset from the IJCAI-15 competition contains
anonymous shopping logs, where we use category and brand
as side information attributes. The Retailrocket dataset, re-
leased by a Kaggle competition, spans six months of brows-
ing activity, but most side information beyond item cate-
gories is missing. We follow the data preprocessing steps
outlined in previous studies (Wu et al. 2019; Yuan et al.
2021a; Hou et al. 2022) for a fair comparison. Key statis-
tics of the datasets are summarized in Table 1.

Dataset Diginetica Retailrocket Tmall
# clicks 858,108 710,586 377,166
# train 526,135 433,648 351,268
# test 44,279 15,132 25,898
# items 40,840 36,968 40,728
avg.len. 5.97 5.43 6.69

Table 1: Statistics of the datasets used in experiments.

Baselines We compare ScoreNet with the following rep-
resentative methods:

(1) ID-based:

• GRU4Rec (Hidasi et al. 2015) is a session-based recom-
mendation model using GRU layers.

• NARM (Li et al. 2017) combines GRU with attention
mechanisms to model item transitions.

• STAMP (Liu et al. 2018) models users’ short-term in-
terests only using attention mechanisms focused on the
last-clicked item.

• SR-GNN (Wu et al. 2019) constructs item transitions as
a directed graph and learns item representation.

• RepeatNet (Ren et al. 2019) incorporates a repeat-
explore mechanism into RNNs to capture the repeat-
explore recommendation intent in a session.

• DSAN (Yuan et al. 2021a) introduces an adaptive sparse
function to enhance the attention mechanism.

• CORE (Hou et al. 2022) linearly generates session em-
beddings to avoid representation inconsistencies.

• Atten-Mixer (Zhang et al. 2023) constructs combina-
tions of recent items of varying lengths.

(2) ID-based with side information:
• ICAI-SR (Yuan et al. 2021b) implements an invasive

side information fusion framework with attention-based
Item-Attribute Aggregation.

• NOVA (Liu et al. 2021) refines attention distribution us-
ing a non-invasive approach with side information.

• DIF-SR (Xie, Zhou, and Kim 2022) employs a non-
invasive method, decoupling attention calculations for
items and side information to enhance performance.

Evaluation metrics We evaluate our model using two
common metrics following (Wu et al. 2019; Ren et al. 2019;
Hou et al. 2022): P@K (Precision at K) and MRR@K (Mean
Reciprocal Rank a K), with K set to 10 and 20. P@K mea-
sures the proportion of relevant items among the top K rec-
ommendations. MRR@K calculates the average reciprocal
rank of the first relevant item in the top K recommendations.

Hyper-parameter Settings We optimize all hyper-
parameters using grid search on the corresponding
validation datasets, including the learning rate η, tempera-
ture coefficient τ , and embedding dimension d. Specifically,
we explore the ranges: η ∈ {0.0001, 0.0005, 0.001, 0.01},
τ ∈ {8, 10, 12, 14}, and d ∈ {64, 100, 128, 200, 256}. Our
experiments identify the optimal values as η = 1e − 3,
τ = 12, and d = 28. We employ Adam as the optimizer
and implement the model in PyTorch with a batch size of
256. The parameter α2, controlling the influence of the side
information re-interaction from the MPRE module on the
final recommendation, is set to 0.3, while α1 is set to 0.7.

Overall performance
Table 2 shows that ScoreNet significantly outperforms base-
line models across all datasets. Several key insights can be
drawn from these results: (1) Contextual feature modeling
is essential for improving recommendation performance.
GNN-based models like SR-GNN surpass earlier models
(e.g., GRU4Rec, STAMP) by modeling complex depen-
dency to learn item embeddings. DSAN exceeds GNN mod-
els by leveraging Transformers for better contextual feature
extraction. (2) Consistency between session and candi-
date item representations enhances accuracy. The CORE
model maintains spatial consistency while using Transform-
ers’ sequence extraction, improving accuracy over DSAN.
(3) Maintaining representation consistency while using
side information offers significant benefits. DIF-SR out-
performs ICAI-SR and NOVA by decoupling item and side
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Model Diginetica Tmall Retailrocket
P@10 P@20 MRR@10 MRR@20 P@10 P@20 MRR@10 MRR@20 P@10 P@20 MRR@10 MRR@20

GRU4Rec 26.17 39.27 9.69 10.59 9.74 10.93 5.78 5.89 38.35 44.01 23.27 23.67
STAMP 33.49 46.47 13.99 14.89 22.63 26.47 13.12 13.36 42.95 50.96 24.61 25.17
SR-GNN 37.72 50.50 16.75 17.63 23.41 27.57 13.45 13.72 43.21 50.32 26.07 26.57
RepeatNet 33.30 43.17 16.65 17.33 42.74 47.94 18.74 19.14 45.84 51.17 29.08 29.45
DSAN 40.29 53.76 17.05 18.69 26.66 32.32 17.90 18.29 49.05 56.54 30.21 30.74
CORE 41.03 54.36 17.95 18.87 32.97 39.31 18.72 19.16 49.27 56.76 30.03 30.56
Atten-Mixer 40.16 53.86 17.28 18.27 30.11 37.24 18.01 18.62 49.02 56.01 28.05 28.57
ICAI-SR 39.39 52.72 16.82 17.73 25.69 31.27 14.07 14.45 48.21 55.93 28.50 29.03
NOVA 39.69 53.86 17.09 18.03 28.20 33.66 15.51 15.89 48.63 56.38 29.29 28.57
DIF-SR 40.30 53.48 17.25 18.17 29.14 34.92 16.26 16.67 48.96 56.80 29.80 29.25

ScoreNet 42.76∗ 56.27∗ 19.38∗ 20.32∗ 44.81∗ 52.24∗ 22.73∗ 23.25∗ 52.09∗ 59.37∗ 32.31∗ 32.81∗

Improv(%) +4.22 +3.44 +7.97 +7.68 +2.34 +6.95 +4.55 +21.35 +5.72 +4.52 +3.46 +7.36

Table 2: Performance comparison of ScoreNet and baseline models across three datasets. Bold values indicate the best overall
results; underlined values show the best baseline performance. All values are reported as percentages, with the ”%” symbol
omitted for brevity. ”∗” denotes that ScoreNet significantly outperforms the best baseline in a paired t-test (p < 0.05).

Model Diginetica Tmall Retailrocket

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

ScoreNet 56.27 20.32 52.24 23.25 59.37 32.81
.-no-MPRE 54.66 19.25 39.84 19.55 57.25 31.06
.-RepeatNet 55.46 18.95 52.03 21.35 58.79 32.02
.-no-MPRErd 56.08 20.18 51.94 22.85 58.91 32.75

Table 3: Performance comparison of ScoreNet variants with
and without MPRE module.

information embeddings, avoiding representation shifts, and
enhancing performance. (4) ScoreNet’s superior perfor-
mance stems from three strategies: First, It maintains de-
coding consistency with a unified scoring mechanism that
integrates side information in a semantic-agnostic manner,
ensuring consistent prediction scores. Second, compared to
RepeatNet, the MPRE module introduces persistent pref-
erence patterns and models re-interactions with multi-side
information independently, revealing user interest patterns
without relying on semantics. Third, The PECS module op-
timizes attention weights using side information, generat-
ing consistent session embeddings and avoiding nonlinear
encoder inconsistencies.

Abltion Studies
Effect of MPRE module We conduct experiments to eval-
uate the effectiveness of the MPRE module.

• .-no-MPRE: ScoreNet without the MPRE module.
• .-RepeatNet: ScoreNet with MPRE replaced by Repeat-

Net for GRU-based re-interaction modeling.
• .-no-MPRErd: ScoreNet without MPRE’s re-interaction

score redistribution mechanism.

Table 3 presents the results for P@20 and MRR@20
across the three datasets for these ScoreNet variants. The
analysis reveals several key findings: First, removing MPRE
significantly decreases performance across all datasets, with
an average drop of 9.61% in P@20 and 8.52% in MRR@20,
underscoring the importance of modeling re-engagement

at both item and side information levels. Second, replac-
ing MPRE with RepeatNet results in a performance de-
cline, showing that GRU-based feature extraction is less
effective in capturing re-engagement characteristics like
frequency and recency. Third, removing the re-interaction
score redistribution mechanism reduces performance across
all datasets, emphasizing the importance of accounting for
global user re-engagement tendencies.

Additionally, varying the hyperparameter α2 in ScoreNet
reveals an inverted U-shaped curve (as shown in Figure 4),
with peak performance at α2 = 0.3. This finding highlights
that incorporating side information benefits captures persis-
tent user interests. However, the increase of α2 leads to per-
formance degradation, indicating that over-reliance on side
information can dilute core item features. Therefore, balanc-
ing core item features with side information is crucial for
optimal model performance.

Effect of PECS module To assess the effectiveness of the
PECS module, we perform the following experiments:
• .-PECS-TF: Replace PECS with a general Transformer

in ScoreNet, using its compound embedding from the last
time step as the session embedding.

• .-PECS-DIFIR: Replace PECS with DIF-SR.
• .-PECS-NS: Remove all side information from PECS.

Figure 3 compares the performance of ScoreNet with
PECS against its variants, demonstrating the effectiveness of
the PECS module and underscoring the importance of main-
taining consistency between session and candidate item rep-
resentations. .-PECS-TF shows a significant performance
decline compared to .-PECS-DIFIR and ScoreNet, indicat-
ing that directly fusing side information with item embed-
dings can disrupt item ID decoding consistency (Hou et al.
2022). .-PECS-DIFIR generally outperforms .-PECS-TF,
showing the effectiveness of DIF-SR in avoiding concatena-
tion of side information and item embeddings, the under-
performance compared to ScoreNet, suggesting that non-
linear operations in the Transformer might introduce bias
when computing candidate item similarity. .-PECS-NS out-
performs both .-PECS-TF and .-PECS-DIFIR across all
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Figure 3: Performance analysis of ScoreNet variants with or
without the PECS Module and its component.

datasets, likely due to its linear weighting of original item
embedding via attention scores, which preserves core item
features. The performance gap with ScoreNet can be at-
tributed to refining attention scores with side information.
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Figure 4: Performance variation with hyper-Parameter α2.

Contributions of Different Side Information
To evaluate the impact of side information on ScoreNet,
we conducted experiments on the Tmall dataset, with re-
sults summarized in Table 4. Removing all side informa-
tion significantly reduces performance, highlighting the crit-
ical role of item attributes in enhancing recommendation ac-
curacy. Among individual attributes, brand information im-
proves performance more than category information (0.10%
on P@20), indicating that finer-grained attributes are more
effective for optimization. Integrating all attributes yields the
best results, demonstrating the synergistic effect of combin-
ing multiple attributes and highlighting ScoreNet’s robust-
ness across diverse e-commerce scenarios.

Visualization of Attention Distribution
We visualize and analyze ScoreNet’s re-engagement atten-
tion scores for side information in Figure 5 to evaluate its

Side Info P@10 P@20 MRR@10 MRR@20

None 44.40 50.87 22.70 23.17
Categorie 44.41 50.97 22.78 23.20
Brand 44.64 51.97 22.62 23.15
All 44.80 52.24 22.81 23.25

Table 4: Performance of ScoreNet with different side infor-
mation on Tmall dataset.
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Figure 5: Visualization of attention distribution. The hori-
zontal axis represents the differential value between the in-
dex of the last re-interaction and each session index, while
the vertical axis denotes the index of the last re-interaction
for specific side information on an item. The horizontal axis
is reversed, with zero on the right and the maximum on the
left. The intensity of the red color indicates the magnitude
of the weight value. (Left: Diginetica; Right: Retailrocket.)

interpretability. The analysis reveals a strong correlation be-
tween a user’s most recent re-interaction with an item at-
tribute and the attribute’s attention weight, with attention
shifting from right to left. In the Diginetica dataset, the high-
est attention score appears at the last repeated visit (index
19) with a differential index of 1, emphasizing the signifi-
cant influence of recent repeated interactions on predictions.
These results demonstrate ScoreNet’s ability to capture tem-
poral dynamics and prioritize persistent user preferences,
enhancing both performance and interpretability in session-
based recommendations.

Conclusion and Future Work
In this work, we propose ScoreNet, which consists of
MPRE and PECS, designed to address diverse interaction
patterns in sessions while maintaining consistent decoding
scores. MPRE models users’ persistent preference patterns
in a semantics-agnostic manner, calculating re-engagement
scores for re-interacted items while avoiding interference
caused by semantic heterogeneity. PECS enhances predic-
tions for items with limited interactions by ensuring a con-
sistent semantic space between session representations and
candidate item ID embeddings using a position-enhanced
encoder. These components together enable ScoreNet to
effectively model diverse interaction scenarios and im-
prove recommendation performance. We validated ScoreNet
across three diverse datasets, demonstrating that it achieves
state-of-the-art performance.

12673



Acknowledgements
We would like to thank the anonymous reviewers for their
valuable discussion and constructive feedback. This work
was supported by the National Natural Science Foundation
of China (U22B2061, U2336204), the National Science and
Technology Major Project of the Ministry of Science and
Technology of China (2022YFB4300603) and Sichuan Sci-
ence and Technology Program (2023YFG0151).

References
Chen, T.; and Wong, R. C.-W. 2020. Handling information
loss of graph neural networks for session-based recommen-
dation. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
1172–1180.
He, R.; and McAuley, J. 2016. Fusing similarity models with
markov chains for sparse sequential recommendation. In
2016 IEEE 16th International Conference on Data Mining
(ICDM), 191–200. IEEE.
Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
2015. Session-based recommendations with recurrent neural
networks. arXiv preprint arXiv:1511.06939.
Hou, Y.; Hu, B.; Zhang, Z.; and Zhao, W. X. 2022. Core:
simple and effective session-based recommendation within
consistent representation space. In Proceedings of the 45th
international ACM SIGIR conference on research and devel-
opment in information retrieval, 1796–1801.
Kabbur, S.; Ning, X.; and Karypis, G. 2013. Fism: factored
item similarity models for top-n recommender systems. In
Proceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 659–667.
Kang, W.-C.; and McAuley, J. 2018. Self-attentive sequen-
tial recommendation. In 2018 IEEE International Confer-
ence on Data Mining (ICDM), 197–206. IEEE.
Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; and Ma, J. 2017.
Neural attentive session-based recommendation. In Pro-
ceedings of the 2017 ACM on Conference on Information
and Knowledge Management, 1419–1428.
Liu, C.; Li, X.; Cai, G.; Dong, Z.; Zhu, H.; and Shang,
L. 2021. Non-invasive Self-attention for Side Informa-
tion Fusion in Sequential Recommendation. arXiv preprint
arXiv:2103.03578.
Liu, Q.; Zeng, Y.; Mokhosi, R.; and Zhang, H. 2018.
STAMP: short-term attention/memory priority model for
session-based recommendation. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge dis-
covery & data mining, 1831–1839.
Liu, Q.; Zhao, X.; Wang, Y.; Wang, Y.; Zhang, Z.; Sun,
Y.; Li, X.; Wang, M.; Jia, P.; Chen, C.; Huang, W.; and
Tian, F. 2024. Large Language Model Enhanced Recom-
mender Systems: Taxonomy, Trend, Application and Future.
arXiv:2412.13432.
Ma, C.; Kang, P.; and Liu, X. 2019. Hierarchical gating net-
works for sequential recommendation. In Proceedings of the
25th ACM SIGKDD international conference on knowledge
discovery & data mining, 825–833.

Qiu, R.; Li, J.; Huang, Z.; and Yin, H. 2019. Rethinking
the item order in session-based recommendation with graph
neural networks. In Proceedings of the 28th ACM interna-
tional conference on information and knowledge manage-
ment, 579–588.
Quadrana, M.; Karatzoglou, A.; Hidasi, B.; and Cremonesi,
P. 2017. Personalizing session-based recommendations with
hierarchical recurrent neural networks. In Proceedings of the
Eleventh ACM Conference on Recommender Systems, 130–
137.
Ren, P.; Chen, Z.; Li, J.; Ren, Z.; Ma, J.; and De Rijke, M.
2019. Repeatnet: A repeat aware neural recommendation
machine for session-based recommendation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 4806–4813.
Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized markov chains for next-
basket recommendation. In Proceedings of the 19th inter-
national conference on World wide web, 811–820.
Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang, P.
2019a. BERT4Rec: Sequential recommendation with bidi-
rectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM International Conference on In-
formation and Knowledge Management, 1441–1450.
Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang, P.
2019b. BERT4Rec: Sequential recommendation with bidi-
rectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on infor-
mation and knowledge management, 1441–1450.
Wang, S.; Cao, L.; Wang, Y.; Sheng, Q. Z.; Orgun, M. A.;
and Lian, D. 2021. A survey on session-based recommender
systems. ACM Computing Surveys (CSUR), 54(7): 1–38.
Wang, Y.; Du, Z.; Zhao, X.; Chen, B.; Guo, H.; Tang, R.; and
Dong, Z. 2023. Single-shot feature selection for multi-task
recommendations. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 341–351.
Wang, Y.; Xu, D.; Zhao, X.; Mao, Z.; Xiang, P.; Yan, L.; Hu,
Y.; Zhang, Z.; Wei, X.; and Liu, Q. 2024. GPRec: Bi-level
User Modeling for Deep Recommenders. arXiv preprint
arXiv:2410.20730.
Wang, Y.; Zhao, X.; Xu, T.; and Wu, X. 2022. Autofield:
Automating feature selection in deep recommender systems.
In Proceedings of the ACM Web Conference 2022, 1977–
1986.
Wang, Z.; Wei, W.; Cong, G.; Li, X.-L.; Mao, X.-L.; and
Qiu, M. 2020. Global context enhanced graph neural net-
works for session-based recommendation. In Proceedings of
the 43rd international ACM SIGIR conference on research
and development in information retrieval, 169–178.
Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; and Tan, T.
2019. Session-based recommendation with graph neural net-
works. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, 346–353.
Xie, Y.; Zhou, P.; and Kim, S. 2022. Decoupled Side In-
formation Fusion for Sequential Recommendation. In Pro-
ceedings of the 45th International ACM SIGIR Conference

12674



on Research and Development in Information Retrieval,
1611–1621.
Xu, C.; Zhao, P.; Liu, Y.; Sheng, V. S.; Xu, J.; Zhuang, F.;
Fang, J.; and Zhou, X. 2019. Graph contextualized self-
attention network for session-based recommendation. In IJ-
CAI, volume 19, 3940–3946.
Yan, A.; Cheng, S.; Kang, W.-C.; Wan, M.; and McAuley,
J. 2019. CosRec: 2D convolutional neural networks for se-
quential recommendation. In Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, 2173–2176.
Yuan, J.; Song, Z.; Sun, M.; Wang, X.; and Zhao, W. X.
2021a. Dual sparse attention network for session-based rec-
ommendation. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, 4635–4643.
Yuan, X.; Duan, D.; Tong, L.; Shi, L.; and Zhang, C. 2021b.
ICAI-SR: Item Categorical Attribute Integrated Sequential
Recommendation. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 1687–1691.
Zhang, P.; Guo, J.; Li, C.; Xie, Y.; Kim, J. B.; Zhang, Y.;
Xie, X.; Wang, H.; and Kim, S. 2023. Efficiently leverag-
ing multi-level user intent for session-based recommenda-
tion via atten-mixer network. In Proceedings of the sixteenth
ACM international conference on web search and data min-
ing, 168–176.
Zhang, T.; Zhao, P.; Liu, Y.; Sheng, V. S.; Xu, J.; Wang,
D.; Liu, G.; and Zhou, X. 2019. Feature-level Deeper Self-
Attention Network for Sequential Recommendation. In IJ-
CAI, 4320–4326.
Zheng, Z.; Chao, W.; Qiu, Z.; Zhu, H.; and Xiong, H. 2024.
Harnessing large language models for text-rich sequential
recommendation. In Proceedings of the ACM on Web Con-
ference 2024, 3207–3216.
Zheng, Z.; Sun, Y.; Song, X.; Zhu, H.; and Xiong, H. 2023.
Generative Learning Plan Recommendation for Employees:
A Performance-aware Reinforcement Learning Approach.
In Proceedings of the 17th ACM Conference on Recom-
mender Systems, 443–454.
Zhou, K.; Wang, H.; Zhao, W. X.; Zhu, Y.; Wang, S.; Zhang,
F.; Wang, Z.; and Wen, J.-R. 2020. S3-rec: Self-supervised
learning for sequential recommendation with mutual infor-
mation maximization. In Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Man-
agement, 1893–1902.

12675


